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Model-reality comparison can be viewed in a
communications context. In this analogy, the
observed “real” data are a sent message, and the model
output are the received message. The model plays
the role of a noisy channel over which the message
is transmitted (Figure 1).

Information theory offers a way to assess literally
the “information content” of any system, and offers
a means for objective quantification of model-
observational data fidelity. The Shannon entropy
(SE) H(X) is the measure of the amount of
uncertainty, variability, or “surprise” present in a
system variableX , while the Mutual Information (MI)
I(X, Y ) measures the amount of shared information
or redundancy between two variablesX and Y .
Information theory’s roots lie in the analysis of
communication of data across a noisy channel (Figure
1), and offer a scheme for quantifying how well
a messageX coming from a transmitter arrives as
Y at the receiver. A more general information-
theoretic measure of message degradation is the
Kullback-Leibler Divergence (KLD), which quan-
tifies insufficiency of agreement in the probatility
desnity functions associated withX and Y . The
ratio of MI to SE yields the amount of information
shared by two datasets versus the information content
of one alone. Alas, the aforementioned information-
theoretic techniques work best for discrete rather than
continuous systems. This is because evaluation of
the Shannon Entropy (SE) for continuous systems–the
differential entropy–does not constitute the continuum
limit of the SE. Relative quantities such as the MI
and KLD are always valid in the continuum case, and
are the continuum limit of their discrete counterparts,
but are just that–relative. This begs the question:
Is there some way I can benchmark it against some
continuum surrogate for the SE? Thus, one faces
a choice when using information theory for model
validation and intercomparison: (1) adopt coarse-
graining strategies that are physically relevant, always

aware that computed SE results re specific to a given
discretisation; or (2) treat the data as continuous and
use the MI combined with some benchmark quantity.
In this paper, I adopt strategy (1), and restrict scope to
a variable that has well-agreed-upon discretisations—
total cloud cover, which by observational convention
is frequently coarse-grained by oktas, tenths, or
percent.

I review basic concepts from information theory. I
put forward the notion that the SE is an alternative
measure of climate variability, and evaluate it for
reanalysis data and climate model output, producing
global maps of the SE. I discuss how to structure
sampling from two datasets to construct “messages”
for use in information-theoretic model validation. I
derive from the SE and MI a pair of fidelity ratios for
assessing model-reality fidelity, and evaluate them for
total cloud amount. I apply a modified KLD to asses
model-reality agreement for local temporally-sampled
total cloud, and explain the relative strictness of the
KLD- and MI-based validation standards. I conclude
with a a roadmap for analysing and validating the
informatics of climate.

Figure 1. Communications system with source
producingH(X) and receiver seeingH(Y ). Amount
of data communicated correctly from source to
receiver is the mutual informationI(X, Y ).



1 INTRODUCTION

Climate model output evaluation remains an area of active research. Many researchers rely on comparison of
statistical moments such as the mean and variance, or on correlation analysis. Moment-based statistical tests
such as thet- andF -tests rely on an assumption of normality of the underlying population. Correlation analysis
between variables is appropriate under the assumptions of normality, linearity, and homoskedasticity. Information
theory provides an attractive approach to higher-order statistical analysis that avoids the assumptions associated
with correlation analysis and moment-based hypothesis tests. The strategy in information theory is based on the
underlying probability density either for a finite set of states for a discrete variable, or for a probability density
function for a continuous variable.

In this study, I explore the idea of Shannon entropy as an indicator of climate variability. I also present two
new quantities for assessing model-reality fidelity that are based on Shannon entropy and mutual information. I
define a procedure for computing these quantities and estimating associated uncertainties. I find these “fidelity
ratios” impose a very high standard of model-reality fidelity that is hard to meet for a typical climate model. I
employ a more lenient standard for model probability density comparison—the Kullback-Leibler divergence—and
explain how the low fidelity ratios result in some cases due topoor agreement between the model’s and reanalysis’
respective probability densities.

This is not the first use of information-theoretic quantities in climatology. Bagrov first introduced a
“similarity index” for meteorological model-reality comparison that assumed underlying continuous normal
distributions (Bagrov [1963]). Much work has been done on the use of mutual information as an indicator of
predictability (DelSole and Tippett [2006]). Muual information has also been employed to study relationships
between climate variables(Knuth et al. [2005]). Relative entropy has been used to validate global distributions of
surface temperature (Shukla et al. [2006]). To my knowledge, this is the first use of information theory to express
climate variability, and to present geographic distributions ofH , MI-based fidelity ratios, and the KLD.

In this study I use total cloud cover to illustrate informatic climate variability. Total cloud cover has the
advantage of having standardised discretisations amenable to discrete-variable informatics, and is of climatological
significance because it is an integrated diagnostic of parameterisations of atmospheric column physics, feeds back
into atmospheric radiative transfer, and is a variable for which widespread observations exist.

2 INFORMATION THEORY

Here we review key concepts from information theory and define terms used in the rest of this paper. Further details
may be found in standard textbooks (Cover and Thomas [2006];Reza [1994])..

Consider a discrete variableX that can have any ofN possible values;X ∈ {x1, . . . , xN}. The probability of
observing each valueX = xi is 0 ≤ p(xi) ≤ 1, subject to the constraint

∑N

i=1
p(xi) = 1. TheShannon Entropy

(SE) orH(X) is defined as

H(X) = −

N
∑

i=1

p(xi) log [p(xi)]. (1)

The units ofH depend on the base of the logarithm; for base2 H is measured inbits, for natural basee H is
measured innats. If X is the set of values seen in a signal, thenH(X) is theamount of information in the signal.
Note also that the SE is nonnegative and finite.

Consider two discrete variablesX ∈ {x1, . . . , xN} andY ∈ {y1, . . . , yM} defined with respective probabilities
{p(x1), . . . , p(xN )} and{p(y1), . . . , p(yM )}, subject to the above normalisation and nonnegativity constraints used
to define the SE. The probability of seeing the combination(xi, yj) is thejoint probability0 ≥ p(xi, yj) ≤ 1, and
subject to the normality constraint

∑N

i=1

∑M

j=1
p(xi, yj) = 1. Thejoint entropyH(X, Y ) measures the combined

information content ofX andY , and is defined as

H(X, Y ) =

N
∑

i=1

M
∑

j=1

p(xi, yj) log [p(xi, yj)]. (2)



If the variablesX andY are statistically independent, then the joint entropyH(X, Y ) is the sum of the SEsH(X)
andH(Y ). If X andY are somehow related and share information, then

H(X, Y ) = H(X) + H(Y ) − I(X ; Y ), (3)

whereI(X ; Y ) is thetransinformationor mutual information(MI)

I(X ; Y ) =
N

∑

i=1

M
∑

j=1

p(xi, yj) log

[

p(xi, yj)

p(xi)p(yj)

]

. (4)

The units for the MI are dictated by base for the logarithm in (4), just as the units are for the SE in (3). The MI
is symmetric; that isI(X ; Y ) = I(Y ; X). If the variablesX andY constitute identical signals, thenH(X) =
H(Y ) = I(X ; Y ). The MI satisfies the properties0 ≤ I(X, Y ) ≤ H(X) and0 ≤ I(X, Y ) ≤ H(Y ). The fidelity
of transmitting a signalX and receivingY can be quantified using thefidelity ratios

FY X =
I(X ; Y )

H(X)
and FXY =

I(X ; Y )

H(Y )
(5)

FY X is the fraction of information present in signalX that was successfully transmitted toY ; note that0 ≤
FY X ≤ 1. FXY is the fraction of information present in signalY that was successfully received fromX ; note that
0 ≤ FXY ≤ 1. In the case of perfect transmission of sourceX to receiverY , FXY = FY X = 1.

As we will see in Section 4, the mutual information is a high standard of quality for dataset intercomparison.
Another approach is to ask: How well do two probability densities that share a common partitioning scheme
agree? TheKullback-Leibler Divergence(KLD) or relative entropyis an information-theoretic standard for judging
how well two probability densities based on a common partitioning scheme agree. Suppose for some variable
X ∈ {x1, . . . , xN} we have two candidate probability densitiesp(X) andq(X), which may be viewed as the
“true” and “modeled” densities, respectively. The KLDDKL is defined as

DKL(p ‖ q) =

N
∑

i=1

p(xi) log

[

p(xi)

q(xi)

]

. (6)

The KLD is not symmetric; that is,DKL(p ‖ q) 6= DKL(q ‖ p). The units for the KLD are defined the same
way as for the SE and MI. The KLD is sometimes called theKullback-Leibler gainor information gainrequired
to representp(X) givenq(X). the “true” and “observed” distributions forX , respectively. On average one needs
DKL(p ‖ q) extra bits of information per symbol to representp(x) usingq(x) as a starting point. The KLD is
nonnegative. If there is perfect agreement betweenp(X) andq(X), DKL = 0. There is no upper bound for values
of DKL; for example, singularities can arise in (6) ifq(xi) = 0 andp(xi) 6= 0, leading to infinite KLD..

For a continuous variableX ∈ (−∞,∞), it is possible to define adifferential entropy(DE) H(X) for x ∈ (−∞,∞)
by replacing the marginal probabilitiesp(xi) with a continuous probability density functionp(x), and replacing the
summation over state indexi in (1) with an integral with respect tox. It is tempting to think that the DE is the
continuum limit of the SE (3); alas, it is not a valid measure of information content because the integral in the
definition of the DE is sensitive to the bin widthsdx, and because it is possible forp(x) > 1 for some values
of x, thus making it possible to have infinite or negative values of the DE. Furthermore, the values of the DE
are not invariant under coordinate transformations. Two information-theoretic quantities are, however valid in the
continuum limit: The mutual information and the Kullback-Leibler divergence. In this study, the scope is restricted
to discretised variables whose quantisation arises from meteorological observation conventions.

3 DATA AND ANALYSIS

The “reality” data used in this study are the National Centerfor Environmental Prediction / Department of
Energy Reanalysis 2 dataset (NCEP-2; Kanamitsu et al. [2002]) that cover the period January 1979-December



2008. Monthly averages are drawn from this dataset, which can be downloaded from the NCEP-2 Web
site (National Oceanagraphic and Atmospheric Administration Earth System Research Laboratory [2009]). The
data reside on a T62 Gaussian grid with 192 longitudes and 96 latitudes. There are 360 monthly averages
in the sample at each grid location. The NCEP-2 total cloud amount data (“tcdc”) is used in this study,
and have values in percent cloud cover ranging from zero to100 percent. The “model” data are from a
500-year control run of the Community Climate System Model (CCSM3; Collins et al. [2006]). Monthly
averages were drawn from the repository of CCSM3 model integration output data maintained by the Earth
System Grid (United States Department of Energy and University Corporation for Atmospheric Research [2009]).
The data reside on a T85 Gaussian Grid comprising 256 longitudes and 128 latitudes. There are 6000 monthly
averages in the sample at each grid location. The CCSM3 totalcloud amount data (“CLDTOT”) is used in this
study, and have values ranging from zero to1. For the SE calculations in this study, the data were used on their
respective grids. For the MI and KLD calculations, the CCSM3data were interpolated from their T85 grid the
the NCEP-2 T62 grid using an inverse-great-circle-distance weighted scheme that is valid assuming the geoid is a
sphere.

Cloud amounts in the reanalysis and model data were coarse-grained into oktas, tenths, and percent, thus avoiding
problems associated with the DE. Data values are mapped intothe interval[0, 1]. The data are then multiplied by8,
10, or 100 for oktas, tenths, or percent, respectively. A class value is assigned by rounding to the nearest integer to
the data value. Thus,9, 11, and101 classes result from coarse-graining by oktas, tenths, and percent, respectively.
The data are organised as time series of global geographic distributions; that is, they are three-dimensional datasets
with dimensions longitude, latitude, time). For this study, time series for fixed values of longitude and latitude are
used as the samples from which SE, MI, and KLD are computed. Thus, maps of of these quantities may be drawn
to illustrate the geographic distribution of entropy and other information statistics.

Calculation of the SE and MI from equations (3) and (4) are straightforward; any instances in whichp(xi) = 0 in
(3) andp(xi, yj) = 0 in (4) provide zero contribution to the SE and MI, respectively. Fidelity ratiosFY X andFXY

are computed using (5). Singularities can arise in the KLD calculation using (6). For this study, singularities in
the KLD calculation are avoided through addition of a small observability threshold termι to each value ofq(xi),
and subsequent renormalisation by division by1 + Nι, whereN is the number of classes in the coarse-graining
scheme. The observability threshold was chosen to beι = 1

2NS
, whereNS is the number of time samples (6000 for

the CCSM3 data). Thus, large—rather than infinite—KLD values result where classi is observed forp(xi) but not
for q(xi).

A sliding window sampling scheme is used to estimate uncertainties in the SE, MI, fidelity ratios, and KLD. For
the SE calculations, a 20-year window is used to computeH , and the window is advanced one year, removing the
first year from the sample, and introducing a new year at its end. For the NCEP-2 data and CCSM3 data this results
in 11 and 481 samples for their respective SE calculations. The mean〈H〉 and standard deviationσH are computed
from the ensemble of resulting SE values. For the MI and KLD calculations, all 30 years of the NCEP-2 data and
a sliding 30-year window of CCSM3 data are used, resulting inan ensemble of 471 values of the MI and KLD.
Ensemble averages and standard deviations are subsequently computed for the MI, fidelity ratios, and KLD.

4 RESULTS

SE for total cloud cover discretised by oktas and percent from a thirty-year sample of NCEP-2 and CCSM3 data
are shown in Figure 2. Fields ofH for total cloud discretised by tenths for a twenty-year sliding window sample
of NCEP-2 and CCSM3 with their associated uncertaintiesσH are presented in Figure 3. The values of the SE are
quite sensitive to the number of classes, but the overall spatial structure of the SE fields is preserved. In both NCEP-
2 and CCSM3 data, relatively high SE values are associated with the tropics, particularly in monsoon regions. The
lowest values of SE lie in a band over the Southern Ocean centered at approximately50◦S. CCSM3 data have
much more widespread high SE regions over land than NCEP-2, and have regions of high entropy in Western Asia
and the US Pacific Northwest that are not present in the reanalyses. These high entropy regions are associated
with relatively flat probability densities for total cloud,and in this sense indicate greater variability. The associated
uncertaintiesσH shown in the right panels in Figure 3 are small, at the most on the order of≤ 1%.

The fidelity ratio fields derived from the MI and SE for CCSM3 vs. NCEP-2 total cloud are shown in Figure 4.
Note that worldwide these values are low, withFY X ≤ 35%. Over some areas of poor agrement (e.g., the Southern
Ocean), there is considerable noise (σFY X

/FY X ≈ 10% of its raw value) in the results, indicative of variability in
the ordering of the tenths classes. The areas of best agreement are over land masses associated with monsoons and
in other regions such as the US Pacific Northwest, the Middle East, and west-central Asia. Signal-to-noise ratios



Figure 2. Shannon entropy for total cloud for CCSM3 and NCEP-2 using various discretization strategies.

for these regions are high in the monsoonal areas, but low in the other areas with largeFY X . From this MI-based
analysis, the temporal structure of the occurrence of tenths classes agrees poorly. This is in part due to interannual
variability, but may have other causes stemming from model bias.

A model bias cause of poor performance in the fidelity ratio metrics shown in Figure 4 may be underrepresented
or absent classes in the probability density for CCSM3 totalcloud discretised by tenths. The KLD offers a scheme
for testing probability density quality, and the KLD field total cloud is shown in Figure 5, with the NCEP-2 and
CCSM3 cloud probability densities playing the roles ofp(xi) andq(xi) in equation (6), respectively. For much of
the world, low KLD values indicate that the probability densities associated with CCSM3 total cloud agree well
with with their reanalysis counterparts, particularly over land masses. Notable exceptions are polar regions over
land, bands over ocean at30◦N and30◦S, an equatorial band over ocean stretching from the EasternPacific and
across the Atlantic Oceans, and a region in off the west coastof South America. The associated uncertainties in
the KLD valuesσKLD are bounded above by10%. Some of the higher KLD values in these regions are caused
by absence of cloud amount classes in the CCSM3 probability densities, and are the singular terms in the KLD
mentioned in Section 2. Of particular interest are the regions of good agreement in probability densities over land
that score poorly in terms of MI, for example parts of Asia, Australia and the Americas. In these areas, CCSM3 is
reproducing the probability density well, but not its annual and interannual ordering of cloud amount classes.

5 CONCLUSIONS AND FUTURE WORK

An information-theoretic approach to climate variabilityhas been presented and its utility in analysing total cloud
amount variability and model-reanalysis comparison have been demonstrated. This is the first stage in a much
larger plan to study the overall informatics of the climate system. Most climate variables are quantities that have
no standard discretisations, which will require a rigourous strategy for coarse-graining climate data such as the
sample-based optimal binning strategy for pdf estimation (Knuth [2006]). Future work will proceed on a number
of fronts including the spatial informatics, informatic relationships between multiple climate variables, and how the
informatic structure of the climate system may change due toanthropogenically-induced global warming.



Figure 3. Shannon entropyH for total cloud for CCSM3 and NCEP-2 with sample standard deviationσH .

Figure 4. Fidelity ratioFY X for total cloud for CCSM3 and NCEP-2 with sample standard deviationσI . Units for
colourscale forFY X andσFY X

are in percent and thousandths, respectively.
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Figure 5. Kullback-Leibler DivergenceDKL for total cloud for CCSM3 and NCEP-2 with sample standard
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